
Laughing With The Hyenas
 Building Your First Website

using bottle.py

hound@marginhound.com

PyATL

March 8th, 2012

http://www.hanginghyena.com/

What I’m Here To Talk About

• A small family project
– Started as a code doodle (anagram solver)

– Wrapped a web framework around it

– And shared it with rest of the world

– Initial focus: hangman solver, hanging with friends helper

• What we learned building it:
– Bottle.py – micro web-frameworks

– Site Architecture, Deployment

– Managing the total package…

http://www.hanginghyena.com/hangmansolver
http://www.hanginghyena.com/hanging-with-friends-solver
http://www.bottlepy.org/docs/dev/

Build a Site in A Week!

The Site Took Less Than a Week…

Main Site

Hosting
Setup

Server
Monitoring

Google
Analytics

SEO
Tags / Links

Web
Scrapers

Android
Scripts

Blog

Twitter
Integration

Simulator
(Map Reduce)

Targeted
Versions

Mobile
View

Kicking off about three months of tinkering…

http://www.hanginghyena.com/
http://www.marginhound.com/bottle-py-resources/
http://www.marginhound.com/bottle-py-resources/
http://www.marginhound.com/bottle-py-resources/
http://www.marginhound.com/bottle-py-resources/
http://www.marginhound.com/bottle-py-resources/
http://www.marginhound.com/bottle-py-resources/
http://www.google.com/analytics/
http://www.google.com/analytics/
http://www.google.com/analytics/
http://www.marginhound.com/the-addictive-nature-of-real-time-analytics-and-website-monitoring-is-less-more/
http://www.marginhound.com/the-addictive-nature-of-real-time-analytics-and-website-monitoring-is-less-more/
http://www.marginhound.com/the-addictive-nature-of-real-time-analytics-and-website-monitoring-is-less-more/
http://www.hanginghyena.com/blog/
http://twitter.com/hanginghyena
http://twitter.com/hanginghyena
http://twitter.com/hanginghyena
http://www.hanginghyena.com/blog/2012/01/31/unbeatable-words-for-hanging-with-friends/
http://www.hanginghyena.com/blog/2012/01/31/unbeatable-words-for-hanging-with-friends/
http://www.hanginghyena.com/blog/2012/01/31/unbeatable-words-for-hanging-with-friends/

The Core

• Wrote a word game solver using Python:
– Send it several pieces of data about a puzzle
– It returns a dictionary object with a list of suggestions

• Encapsulated it within a class method
– Hides significant internal complexity
– Can be plugged into other programs (eg. strategy simulator)
– Modular design, configuration options for new games

• Could have invoked it from the command line

• Instead, the arguments come via HTTP….

• Pattern works for calculations, database lookups, etc.

http://www.hanginghyena.com/

The Front End

• Not much to see here:

– Static HTML files
– Jquery / CSS enhancement
– Loads page & does AJAX calls to get word ideas
– Most common calls are cached on server

• Which is the point:

– Few moving parts – serve content from Apache/nginx
– Can swap content w/o restarting the server
– Lots of people & tools available to create HTML.
– Can swap out server side components fairly easily…

How can we link them?

• Python has some good options:
– Django: full web framework, many features

– Others – cherrypy, Web2py, etc.

• But I don’t want to rebuild my application:

– I just want to wrap my analytics program

– Handle the details of composing a response

– And expose it to the web…

• Which is why we have micro-frameworks….

http://www.marginhound.com/pyatl-talk-building-websites-using-bottle-py/

What are Micro Frameworks?

• Minimalist approach to python websites

• Examples – Bottle.py, Flask, many others

• Maps URL routes to Python function calls:
– Request Routing (URL definition)

– Request Parsing & Validation

– Returning Content (files, errors, cookies, etc)

• Can be extended with plug-ins…
– HTML Templates, Validation, Databases, Sessions

When are Micro Frameworks relevant?

Several areas come to mind:

• Simple or portable applications
– Data focused web services which don’t need a full framework
– Simplifies process of spinning up a new machine

• Google App Engine (bottle has a special adapter)

• Entry Point for developers from other web languages

• Best of Breed Model (experienced developers)
– For when the framework doesn’t match the way you think
– Extend framework using plug-ins and custom modules
– Easier to see what is going on under the hood

https://developers.google.com/appengine/

When To Think Twice…

Some cautionary notes:

• Don’t reinvent Django

– If it looks like large CMS / framework, quacks like a…
– Don’t use bottle if you want a ready-made solution
– Ideally – seek simplicity or to address a mindset gap

• Usually need a front-end server:

– Bottle & Flask have development servers
– Will need to run a “production grade” server in front
– Both have “adapters” to simplify this process

Introducing Bottle.py

• Been around several years

• Entire framework fits in a single file!
– No dependencies outside the standard library
– But…works better with a good server (cherrypy)

• Addresses core web server functions

• Includes “SimpleTemplateEngine” markup language

– Supports others (Jinja2, Mako)

• Plugins for many common production servers

http://www.bottlepy.org/
http://www.bottlepy.org/docs/dev/stpl.html
http://www.bottlepy.org/docs/dev/stpl.html
http://www.bottlepy.org/docs/dev/stpl.html

Routes

• Route Decorator

• URL => Python Function => Returns Result

• Produces a familiar looking result….

from bottle import route, run

@route('/')
def hello():
 return 'Hello World'

run(host='localhost', port=8080)

A richer example…

from bottle import route, run, validate, static_file

def calc(inputval):
 return {‘result’:42}

@route('/’)
def serve_homepage():
 return static_file(‘home.html’, root='static/')

@route('/static/<filename:path>')
def static(filename):
 return static_file(filename, root='static/')

@route('/calculate/:inputval', method='GET')
def run_calc(inputval):
 return calc(inputval)

run(host='localhost', port=8080)

Complicated Analytics Function
Must Return a Dictionary

(we’re ignoring the inputval
for some cheap humor)

Serve the Home Page
(could also use a template)

Serves Static Assets (js, css, art)
(in production – move this to

front end server, S3, CDN)

 Accepts value from browser,
runs “calc” function,
returns dict from calc

as a JSON object

Client side code…

<html><head>
<script type="text/javascript" src="https://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js"></script>
<script type="text/javascript">
 $(document).ready(function() { $('#get_answer').click(
 function(){
 $('#the_answer').empty()
 $.ajax({ url: '/calculate/50‘,
 cache:false, type: 'GET',
 success: function(data) {
 $('#the_answer‘).append("The Answer IS:" + data.result);}
 });
 })
 });
</script>
</head><body>

Think of a Question and I'll give you the answer

<button id='get_answer'>Get the answer!</button>

<div id='the_answer'></div>
</body>
</html>

Grab The Static Image

Jquery Executes AJAX
Call To Server

Trigger The AJAX

Basic HTML Page

Write Out Results

Building Up The Server…

• Dynamic URL’s
– Regular expressions, @validate decorator, custom validation functions

• Request Object
– Parse forms, POSTS, handle file uploads

• Other basics
– Cookies, HTTP error codes, HTTP redirects

• Simple Template Engine
– Dynamic HTML generation, @view decorator

• Sessions / Caching
– recommend using beaker

• Databases
– Plugins for SQLAlchemy, Mongo, sqlite, redis, memcache, others…

http://www.bottlepy.org/docs/dev/tutorial.html
http://www.bottlepy.org/docs/dev/tutorial.html
http://www.bottlepy.org/docs/dev/tutorial.html
http://www.bottlepy.org/docs/dev/tutorial.html
http://www.bottlepy.org/docs/dev/tutorial.html
http://www.bottlepy.org/docs/dev/tutorial.html
http://www.bottlepy.org/docs/dev/tutorial.html
http://www.bottlepy.org/docs/dev/tutorial.html
http://www.bottlepy.org/docs/dev/tutorial.html
http://www.bottlepy.org/docs/dev/tutorial.html
http://www.bottlepy.org/docs/dev/tutorial.html
http://www.bottlepy.org/docs/dev/tutorial.html

Other Lessons Learned

• Process, Process, Process….
– Script everything, use automated triggers where possible
– Pays big dividends – everything is repetitive

• Server Monitoring
– Minimum – cron job to monitor, report, restart
– For a more serious site, look at packages/services

• Use Revision Control Religiously
– Especially for SEO rewrites – helps you see what hit you

• Set up a Staging Environment
– Internet accessible but in “dark space” (no search engines)
– Crawl yourself (free tools), load test yourself, live test browsers

• Clean deployment / restart process

http://www.marginhound.com/devops-eye-for-the-analytics-guy-2/
http://www.marginhound.com/devops-eye-for-the-analytics-guy-2/
http://www.marginhound.com/devops-eye-for-the-analytics-guy-2/

Getting Out There

Hi Mom!

Ramp Up
Twitter Activity

Bad Keyword!
No New
Visitors!

Ranked in Top 10
For First Target

Search Term

Building Position
In Target Term,

Smaller Searches

• Product / Audience
– Your assumptions are wrong. But that’s ok…
– Know where you can actually get users (Scrabble vs. Hangman)
– Blogging / Twitter helps by forcing you to simplify your message

• SEO – it’s worth investing some time to learn this…
– Knew NOTHING at launch – our design wasn’t SEO friendly
– Ranking on Google takes time – seed critical searches early….

• Learn your traffic patterns, schedule accordingly
– Twitter & Release new content 12 – 24 hours before peaks (SEO Boost)
– Release content slowly, so there’s always something relatively new…

• Most Important: Have Faith. If you keep trying & learning you’ll eventually get it.

http://www.marginhound.com/what-happens-when-everyone-codes-a-small-team-perspective/
http://www.hanginghyena.com/solvers/scrabble-helper
http://www.hanginghyena.com/hangmansolver
http://www.hanginghyena.com/blog/
http://twitter.com/hanginghyena

Conclusion

• Would I do it again?
– Absolutely!

• Did it for fun (for now) but..
– Forced exposure to many areas, measurable competency
– Got the confidence to pursue more ambitious projects
– Already using the lessons in my day job

• Idea doesn’t have to be great…
– We figured out the really good stuff (features, promotions,

design elements) after we launched!
– Measurable outcomes (visits, sales, quality) facilitate progress
– Hardest part is getting started…

http://www.hanginghyena.com/blog/2012/06/24/why-you-should-monetize-your-side-projects-2/
http://www.marginhound.com/google-seo-and-the-power-of-awesome-user-experience/
http://www.marginhound.com/google-analytics-dont-tell-me-who-visits-tell-me-who-came-back/

