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The Analyst Role (and its discontents) 

• Theoretical Purpose of The Analyst – Guide other members of the 
team through developing rigorous solutions to business questions, 
using deep expertise in statistics, finance, etc…. 
 

• How it really works: 
  

– In retrospect, the answer to most “valuable” questions becomes obvious 
if you have access to the correct data 

 

– Corollary: If we had the data, we would have already solved it. 

 

– Your job is to figure out how to hack together the right dataset 

 

• From stuff we haven’t used before… 

• And make sure it’s right…  

• By noon tomorrow… 

 
 



Why Python? 

• Ad-hoc analysis usually requires three “layers” in your tool box: 

 
– Data Extraction   => SQL or a query builder 

– Transformation & Analysis  => Scripting Language 

– Presentation   => Excel / PowerPoint / Access 
 

 

• Python handles the middle layer well: 
 

– Succinct, Powerful Code – Duck Typing, First Class Functions   
 

– More expressive than databases (SQL), MS Office, statistics applications 
 

– Large library of built-in modules / data-types for common chores  
 

– Easy access to higher speed options (Numpy, Cython, JIT compilers)  
 

– Interpreter – often have to “doodle” with data / functions to identify trends   
 

– Readability Counts… 



Hypothetical Problem (For Main Examples) 

• You manage a kitchen 
 

• Every day, you purchase food – you keep a record of this 
 

• You would like to know: 
 

• What you are buying? 

• How much variation in prices exists? 
 

• You intend to ask for a discount but… 
 

• Your customers are very sensitive to certain items – so you 
need to make sure you don’t lose those suppliers…  

 

• Naturally, as a trained analyst, you want to use statistics which 
aren’t easily available in most entry-level database programs… 
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Python ODBC Connections 

• Simplifies Access to Databases 
 

– Script refresh / download processes (eliminates boring work) 

– Save “snapshots” of data sets for future review / justification 

– Can directly export your results to DB/Access/Excel  

 

• Requires you to learn SQL but.. 
 

– Enables you to shift some of your processing to the larger machine; 
increases calculation speed and reduces volume of data to retrieve 

– High end databases will often have a nice analytics library 

 

• Python has a database API specification (v 2.0); many libraries exist 
(mix of free and commercial). Two good ones: 
  

–  pyodbc  http://code.google.com/p/pyodbc/ (supports 2.x) 

–  ceODBC  http://ceodbc.sourceforge.net/ (supports 3.1) 

http://code.google.com/p/pyodbc/
http://ceodbc.sourceforge.net/


Python ODBC Connections 

High Level Activities 
 

– Establish a connection to the database 

– Set up a cursor 

– Generate SQL & feed it to the cursor 

– Cursor returns an iterable object for you to work with 

– If writing, remember to commit 

– Close connection when done – risks locking the database / table 

 
Read Example 

 

conn = pyodbc.connect('DSN=‘Main DW’; 
 UID=SPAM;PWD=EGGS) 

cursor = conn.cursor() 
 

sql = "Select food, amount from po_list” 

cursor.execute (sql) 
 

Results = [ [row.food, row. amount)] for 

   row in cursor] 

Write Example 
 

<continues read example> 
 

sql="Insert into po_list (food, amount) 

 values (‘Milk’, 1)” 

 

cursor.execute(sql) 

conn.commit() 

conn.close() 



Databases – Simplifying your life 

• Analytics SQL is often verbose, repetitive, and tedious to debug: 

 

• 80% of your queries request the same data (invoices, shipments, etc) 

• A solution – build templates, customize at runtime (search/replace) 

• Use external template files so you can share within your team  

 

• Multi-step queries are frequently simpler / faster / more transparent: 

 

• Run an initial query to get current database status (update dates, etc.) 

• Complete calculation of query parameters in your script 

• Update the main query template(s) with the results of your work 

• Often much easier to test, may execute quicker as well 

 

• Also worth automating “data type conversion” when using the results: 

 

• Cursor object has a “description” attribute – data type, size, etc. 

• Write introspective code to identify data types (for array, table creation)  

• Also useful for: date conversions, management of null values 



Manipulating Data – Core Python 

Can get a lot done using simple fundamentals: 
 

• Data Structures 
 

• Obvious Choices - List of Lists (aka Nested Lists), Dictionaries 

• Specialized Options: Deque, Array, Tuples, Named Tuples 
 

• Useful tools for slicing and dicing 
 

• List comprehensions 

• Select / Filter data, apply functions to results 

• Use nested and multi-step list comps for advanced operations 

• enumerate() – useful for ranking, updating a nested list in place 
 

• If-Else Expressions (X if X>0 Else 0) 

• Lambda and Map 

• Operator.Itemgetter() - allows you to select subset of elements from a list 

• Itertools: Group By, Cycles, Calculate Permutations 
 

• Constantly making tradeoffs within this universe: 
 

• Remembering Data Structure Layout (Field1, Field2, Field3) 

• Additional complexity of manipulating data structures other than lists / tuples 

• Processing Performance impacts  

 



Manipulating Data – List of Lists Examples 

We will start manipulating the purchase order data for our main example: 

 
Each record consists of:    1 – food 

       2 – uom 

      3 – amount 

      4 - unit_cost 

      5 - buy_date 

 

• Example 1 – calculate total cost for each PO (item 2 x item 3) 

 

  dataset= [item + [item[2]*item[3]] 

     for item in dataset] 

 

• Example 2 – rank my purchase orders by total cost 

 

 dataset = [[i+1] + item for i, item in  

  enumerate( 

   sorted(dataset, key=operator.itemgetter(5), 

     reverse = True))] 

 



Manipulating Data – More Complex 

Want to replicate functionality delivered by a SQL “Group By” Statement and 
aggregate statistical calculations, with the following twists: 
 

• Define your own aggregate statistics (Python, Numpy, custom code)  

• Incorporate data from outside your original database 

• Wants to be able to recycle code within your script (similar reports) 

 

The Specific Request (using our kitchen example): 

 

• Group purchase orders by item purchased (spam, eggs, beer, etc.) 

• Check to see if there are special notes for the item 

• Calculate list of aggregate statistics (total qty, total cost, best cost, etc.) 

 

Solution Components (using some “helper” functions): 

 

• Group records using itertools.groupby   

• Use dictionary “get” method to append notes to the keys  

• Use list comprehension to calculate statistics for each group 



Manipulating Data – More Complex 

First Helper - set up the group by statement 

 

The Function: 

 

 def group_my_list(dataset, my_key): 
 

  return itertools.groupby(sorted(dataset, key=my_key),  

   key=my_key) 
 

 

The Function Call: 

 

 group_my_list(dataset, operator.itemgetter(0))] 
 

 

Explanation:  

 

• Returns a “configured” group by iterator with less repetitive code 

• Dataset needs to be sorted by your key 

• Key is actually a comparison function 

• Use operator.itemgetter to select specific list element 

• Could rewrite this to pass the list element vs. a function 



Manipulating Data – More Complex 

Second Helper – Process List of Statistics For Each Group 
 

The Function: 

 
def run_stats(record_set, stats_list): 

 

         return [stat(map(operator.itemgetter(ref), record_set)) 

               for stat, ref in stats_list] 
 

The Function Call: 

 
      PO_Stats = ((sum,2),(sum,5),(min,2),(max,2),(min,3),(max,3), (np.median, 3))   

 run_stats(list(g),PO_Stats) 
 

 

Explanation:  
 

• Called with a list of grouped records and a list of function / element pairs 

• Returns a list of aggregate statistics (one per pair on function list) 

• For each pair in the list of the function / element pairs:  

• Use map and operator.itemgetter to select a list of that element (eg. all prices) 

• Use the function piece of the pair to reduce that list to a single value 

• Append that value to your result list 

 



Manipulating Data – More Complex 

Bringing It all Together…. (doing the dictionary check in-line) 

 

Generating The List of Aggregate Statistics: 
 

prod_agg = [[k + special_prefs.get(k,””)] + 

                    run_stats(list(g),PO_Stats) 

                        for k, g in 

                            group_my_list(dataset, operator.itemgetter(0))] 
 

 

Explanation:  
 

• Use a list comprehension to iterate across the sets of grouped records 
 

• For each set of grouped records, construct a “result list” by joining: 
 

• The key plus any notes (Single Element List) 

• For each key, use the get method of the dictionary “special prefs” to 
return any notes; get lets you define a default value (in this case, ””)  
 

• The aggregate statistics for that group 

• Calculated using our run_stats function  



Manipulating Data – Demonstration 

<Slide Added To Summarize The Program Used In The Demonstration> 
 

• Generated table of product level statistics using our group by statement 

• Calculated a potential savings number (cost @ best price vs. actual cost) 

• Ranked categories by potential savings 

• And generated the following graph (using matplotlib.pyplot’s plot function): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Looks like we need to visit the cheese shop…. 



Manipulating Data – Numpy 

Numpy Array: 
 

• Wraps a very fast low level array for performing calculations 

• Supported by set of built-in function optimized for numpy 
– Some of these functions can also be use on Python lists 

• Large base of supporting statistical/numeric libraries in Scipy 

• The price: must define data type in advance, one type per array 

• But…may significant boost performance (with minor changes) 
 

  Analyzing 5MM subsets of series:  600 -> 150 CPU seconds 
 

Structured Array: 
 

• Variant of the numpy array but can access “columns” of data using 
string references (eg. “price”, “cost”, “part number”) 

• Similar to data sets / frames in R, SAS, and other languages 

• Significantly More Readable – certain operations may be slower 

• Can mix data types (at the column level) 

• Very good for exploratory analysis 



Manipulating Data – Matplotlib 

• Plotting Library for Scipy / Numpy 
 

• Mlab module has utilities for managing datasets / structured arrays 
 

• Some useful functions 

 

• Rec_summarize  Create New Field by Applying a Function  

• Rec_GroupBy  Aggregate Stats for Subset of Records  

• Rec_Append_Fields Create New Field from like-sized array  

 

• Other useful functions 

• Rec_join    Match datasets 

• Drop_fields   Simplify datasets 

• Rec2CSV, CSV2REC  Load / Unload datasets (auto-typing) 



Manipulating Data – Numpy Example 
 

Some sample applications: 

 

Example 1 – Calculating a field using other fields 

 

dataset = ml.rec_append_fields(dataset, "gross_cost", 

                 [item['amount']*item['unit_cost'] for item in dataset]) 

 

 

 

Example 2a -  Create New Field using dict lookup 

 

 lookup = (('food', lambda x:[item+special_prefs.get(item,"")  

   for item in x], 

                                 'food_groups'),) 

 prod_agg = ml.rec_summarize (prod_agg,lookup) 

List comprehensions 

Very Useful Here 

Works When New 

Field Derived From 

Single Element 



Manipulating Data – Numpy Example 

 

Example 2b – Group By With Aggregate Statistics 
 

 stats_list = (("amount",np.sum,"qty_sum"), 

                  ("gross_cost",np.sum,"cost_sum"), 

                  ("amount",np.min,"qty_min"), 

                  ("amount",np.max,"qty_max"), 

                  ("unit_cost",np.min,"uc_min"), 

                  ("unit_cost",np.max,"uc_max"), 

                  ("unit_cost",np.median,"uc_median"),) 
 

prod_agg = ml.rec_groupby(dataset,(("food"),),stats_list) 
 

“The Hack” 
 

These functions appear to work with any function which: 
 

• Rec_Summarize  accepts a list and returns a list of the same size/order 

• Rec_GroupBy accepts a list and reduces it to a single value 
 

Which enables you to execute a wide range of calculations and transformations 
with some creative use of list comprehensions and other methods. 

 

Cleaner, More 

Readable Than 

Prior Version 



Summation 

• Several ways to do it – the “obvious one” depends on tradeoffs 

  
– How much does your data structure change? 

– Is the data fundamentally static (eg. financial markets data) 

– Developer Speed vs. Processing Power 

 

• Don’t underestimate the value of freedom 

 
– Create / Extend your own analytical functions 

– Develop your own frameworks / helper libraries 

– Can view / fork source code for key modules 

– Active online support community  
 

• Makes the analyst role more interesting 
 

– Can ask questions faster, streamline repetitive tasks 

– Transparency -> Quality -> Less Stress 

– More time to think of interesting ways to transform your data 


