
Using Python for Analytics

“Batteries Included”

MarginHound

hound@marginhound.com

July 14th 2011

http://www.marginhound.com/

The Analyst Role (and its discontents)

• Theoretical Purpose of The Analyst – Guide other members of the
team through developing rigorous solutions to business questions,
using deep expertise in statistics, finance, etc….

• How it really works:

– In retrospect, the answer to most “valuable” questions becomes obvious
if you have access to the correct data

– Corollary: If we had the data, we would have already solved it.

– Your job is to figure out how to hack together the right dataset

• From stuff we haven’t used before…

• And make sure it’s right…

• By noon tomorrow…

Why Python?

• Ad-hoc analysis usually requires three “layers” in your tool box:

– Data Extraction => SQL or a query builder

– Transformation & Analysis => Scripting Language

– Presentation => Excel / PowerPoint / Access

• Python handles the middle layer well:

– Succinct, Powerful Code – Duck Typing, First Class Functions

– More expressive than databases (SQL), MS Office, statistics applications

– Large library of built-in modules / data-types for common chores

– Easy access to higher speed options (Numpy, Cython, JIT compilers)

– Interpreter – often have to “doodle” with data / functions to identify trends

– Readability Counts…

Hypothetical Problem (For Main Examples)

• You manage a kitchen

• Every day, you purchase food – you keep a record of this

• You would like to know:

• What you are buying?

• How much variation in prices exists?

• You intend to ask for a discount but…

• Your customers are very sensitive to certain items – so you
need to make sure you don’t lose those suppliers…

• Naturally, as a trained analyst, you want to use statistics which
aren’t easily available in most entry-level database programs…

Typical Process Flow

Databases

Oracle &

Access

Excel

& Flat

Files

Manipulate

Data

(Merge / Transform)

Statistical

Calculations

Presentation

Layer

Pyodbc

CeODBC

Core Python

• List Comprehensions

• Itertools

Numpy

• Matplotlib

• Numpy Array

• Scipy Library

CSV

Python ODBC Connections

• Simplifies Access to Databases

– Script refresh / download processes (eliminates boring work)

– Save “snapshots” of data sets for future review / justification

– Can directly export your results to DB/Access/Excel

• Requires you to learn SQL but..

– Enables you to shift some of your processing to the larger machine;
increases calculation speed and reduces volume of data to retrieve

– High end databases will often have a nice analytics library

• Python has a database API specification (v 2.0); many libraries exist
(mix of free and commercial). Two good ones:

– pyodbc http://code.google.com/p/pyodbc/ (supports 2.x)

– ceODBC http://ceodbc.sourceforge.net/ (supports 3.1)

http://code.google.com/p/pyodbc/
http://ceodbc.sourceforge.net/

Python ODBC Connections

High Level Activities

– Establish a connection to the database

– Set up a cursor

– Generate SQL & feed it to the cursor

– Cursor returns an iterable object for you to work with

– If writing, remember to commit

– Close connection when done – risks locking the database / table

Read Example

conn = pyodbc.connect('DSN=‘Main DW’;
 UID=SPAM;PWD=EGGS)

cursor = conn.cursor()

sql = "Select food, amount from po_list”

cursor.execute (sql)

Results = [[row.food, row. amount)] for

 row in cursor]

Write Example

<continues read example>

sql="Insert into po_list (food, amount)

 values (‘Milk’, 1)”

cursor.execute(sql)

conn.commit()

conn.close()

Databases – Simplifying your life

• Analytics SQL is often verbose, repetitive, and tedious to debug:

• 80% of your queries request the same data (invoices, shipments, etc)

• A solution – build templates, customize at runtime (search/replace)

• Use external template files so you can share within your team

• Multi-step queries are frequently simpler / faster / more transparent:

• Run an initial query to get current database status (update dates, etc.)

• Complete calculation of query parameters in your script

• Update the main query template(s) with the results of your work

• Often much easier to test, may execute quicker as well

• Also worth automating “data type conversion” when using the results:

• Cursor object has a “description” attribute – data type, size, etc.

• Write introspective code to identify data types (for array, table creation)

• Also useful for: date conversions, management of null values

Manipulating Data – Core Python

Can get a lot done using simple fundamentals:

• Data Structures

• Obvious Choices - List of Lists (aka Nested Lists), Dictionaries

• Specialized Options: Deque, Array, Tuples, Named Tuples

• Useful tools for slicing and dicing

• List comprehensions

• Select / Filter data, apply functions to results

• Use nested and multi-step list comps for advanced operations

• enumerate() – useful for ranking, updating a nested list in place

• If-Else Expressions (X if X>0 Else 0)

• Lambda and Map

• Operator.Itemgetter() - allows you to select subset of elements from a list

• Itertools: Group By, Cycles, Calculate Permutations

• Constantly making tradeoffs within this universe:

• Remembering Data Structure Layout (Field1, Field2, Field3)

• Additional complexity of manipulating data structures other than lists / tuples

• Processing Performance impacts

Manipulating Data – List of Lists Examples

We will start manipulating the purchase order data for our main example:

Each record consists of: 1 – food

 2 – uom

 3 – amount

 4 - unit_cost

 5 - buy_date

• Example 1 – calculate total cost for each PO (item 2 x item 3)

 dataset= [item + [item[2]*item[3]]

 for item in dataset]

• Example 2 – rank my purchase orders by total cost

 dataset = [[i+1] + item for i, item in

 enumerate(

 sorted(dataset, key=operator.itemgetter(5),

 reverse = True))]

Manipulating Data – More Complex

Want to replicate functionality delivered by a SQL “Group By” Statement and
aggregate statistical calculations, with the following twists:

• Define your own aggregate statistics (Python, Numpy, custom code)

• Incorporate data from outside your original database

• Wants to be able to recycle code within your script (similar reports)

The Specific Request (using our kitchen example):

• Group purchase orders by item purchased (spam, eggs, beer, etc.)

• Check to see if there are special notes for the item

• Calculate list of aggregate statistics (total qty, total cost, best cost, etc.)

Solution Components (using some “helper” functions):

• Group records using itertools.groupby

• Use dictionary “get” method to append notes to the keys

• Use list comprehension to calculate statistics for each group

Manipulating Data – More Complex

First Helper - set up the group by statement

The Function:

 def group_my_list(dataset, my_key):

 return itertools.groupby(sorted(dataset, key=my_key),

 key=my_key)

The Function Call:

 group_my_list(dataset, operator.itemgetter(0))]

Explanation:

• Returns a “configured” group by iterator with less repetitive code

• Dataset needs to be sorted by your key

• Key is actually a comparison function

• Use operator.itemgetter to select specific list element

• Could rewrite this to pass the list element vs. a function

Manipulating Data – More Complex

Second Helper – Process List of Statistics For Each Group

The Function:

def run_stats(record_set, stats_list):

 return [stat(map(operator.itemgetter(ref), record_set))

 for stat, ref in stats_list]

The Function Call:

 PO_Stats = ((sum,2),(sum,5),(min,2),(max,2),(min,3),(max,3), (np.median, 3))

 run_stats(list(g),PO_Stats)

Explanation:

• Called with a list of grouped records and a list of function / element pairs

• Returns a list of aggregate statistics (one per pair on function list)

• For each pair in the list of the function / element pairs:

• Use map and operator.itemgetter to select a list of that element (eg. all prices)

• Use the function piece of the pair to reduce that list to a single value

• Append that value to your result list

Manipulating Data – More Complex

Bringing It all Together…. (doing the dictionary check in-line)

Generating The List of Aggregate Statistics:

prod_agg = [[k + special_prefs.get(k,””)] +

 run_stats(list(g),PO_Stats)

 for k, g in

 group_my_list(dataset, operator.itemgetter(0))]

Explanation:

• Use a list comprehension to iterate across the sets of grouped records

• For each set of grouped records, construct a “result list” by joining:

• The key plus any notes (Single Element List)

• For each key, use the get method of the dictionary “special prefs” to
return any notes; get lets you define a default value (in this case, ””)

• The aggregate statistics for that group

• Calculated using our run_stats function

Manipulating Data – Demonstration

<Slide Added To Summarize The Program Used In The Demonstration>

• Generated table of product level statistics using our group by statement

• Calculated a potential savings number (cost @ best price vs. actual cost)

• Ranked categories by potential savings

• And generated the following graph (using matplotlib.pyplot’s plot function):

Looks like we need to visit the cheese shop….

Manipulating Data – Numpy

Numpy Array:

• Wraps a very fast low level array for performing calculations

• Supported by set of built-in function optimized for numpy
– Some of these functions can also be use on Python lists

• Large base of supporting statistical/numeric libraries in Scipy

• The price: must define data type in advance, one type per array

• But…may significant boost performance (with minor changes)

 Analyzing 5MM subsets of series: 600 -> 150 CPU seconds

Structured Array:

• Variant of the numpy array but can access “columns” of data using
string references (eg. “price”, “cost”, “part number”)

• Similar to data sets / frames in R, SAS, and other languages

• Significantly More Readable – certain operations may be slower

• Can mix data types (at the column level)

• Very good for exploratory analysis

Manipulating Data – Matplotlib

• Plotting Library for Scipy / Numpy

• Mlab module has utilities for managing datasets / structured arrays

• Some useful functions

• Rec_summarize Create New Field by Applying a Function

• Rec_GroupBy Aggregate Stats for Subset of Records

• Rec_Append_Fields Create New Field from like-sized array

• Other useful functions

• Rec_join Match datasets

• Drop_fields Simplify datasets

• Rec2CSV, CSV2REC Load / Unload datasets (auto-typing)

Manipulating Data – Numpy Example

Some sample applications:

Example 1 – Calculating a field using other fields

dataset = ml.rec_append_fields(dataset, "gross_cost",

 [item['amount']*item['unit_cost'] for item in dataset])

Example 2a - Create New Field using dict lookup

 lookup = (('food', lambda x:[item+special_prefs.get(item,"")

 for item in x],

 'food_groups'),)

 prod_agg = ml.rec_summarize (prod_agg,lookup)

List comprehensions

Very Useful Here

Works When New

Field Derived From

Single Element

Manipulating Data – Numpy Example

Example 2b – Group By With Aggregate Statistics

 stats_list = (("amount",np.sum,"qty_sum"),

 ("gross_cost",np.sum,"cost_sum"),

 ("amount",np.min,"qty_min"),

 ("amount",np.max,"qty_max"),

 ("unit_cost",np.min,"uc_min"),

 ("unit_cost",np.max,"uc_max"),

 ("unit_cost",np.median,"uc_median"),)

prod_agg = ml.rec_groupby(dataset,(("food"),),stats_list)

“The Hack”

These functions appear to work with any function which:

• Rec_Summarize accepts a list and returns a list of the same size/order

• Rec_GroupBy accepts a list and reduces it to a single value

Which enables you to execute a wide range of calculations and transformations
with some creative use of list comprehensions and other methods.

Cleaner, More

Readable Than

Prior Version

Summation

• Several ways to do it – the “obvious one” depends on tradeoffs

– How much does your data structure change?

– Is the data fundamentally static (eg. financial markets data)

– Developer Speed vs. Processing Power

• Don’t underestimate the value of freedom

– Create / Extend your own analytical functions

– Develop your own frameworks / helper libraries

– Can view / fork source code for key modules

– Active online support community

• Makes the analyst role more interesting

– Can ask questions faster, streamline repetitive tasks

– Transparency -> Quality -> Less Stress

– More time to think of interesting ways to transform your data

